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Abstract. Surface properties of a random deposition model in which the effects of surface 
diffusion with the threshold Ah are taken into account are studies in 1 + 1 dimensions. The 
surface diffusion occurs only when the difference of the height between the nearest 
neighbours is more than the threshold Ah. The scaling properties of the surface of the 
deposit are studied as a function of the threshold Ah of surface diffusion. It is shown that 
a crossover phenomenon in the surface structure of the deposit occurs from the no diffusion 
region on small length scales to the surface diffusion region on large length scales. The 
exponent p, which describes how the surface thickness grows with the height of the deposit 
(for an extremely large deposit), vanes from 1/2 (for high thresholds) to 1/4 (for low 
thresholds). The crossover length h, from the random filling deposition to the random 
deposition with surface diffusion scales as Ah'.". 

Surface structures of growth processes have recently attracted considerable attention 
[l]. For the ballistic deposition model [2], the Eden model [3] and the random filling 
deposition model with surface diffusion [4], it has been shown that the surface of the 
deposit exhibits a self-affine fractal geometry which can be described in terms of the 
scaling form 

(1) 
where 5 is the variance in the surface height, h is the mean height of the deposit and 
L is the lateral size of the deposit. The scaling function f ( x )  tends to a constant value 
when x tends to infinity and behaves as x p  when x tends to zero. 6 behaves as La for 
large h and as h p  for large L. In 1 + 1 dimensions simulations give a = 1/2 and p 
about 1/3  for the ballistic model [2,5] and the Eden model [3,6]. By introducing 
surface diffusion in the random filling deposition model [4], it has been found that 
the value of the p exponent becomes 1/4. Also it has been shown that the same value 
of the p exponent is obtained when surface diffusion or complete restructuring [7] is 
included in the ballistic deposition model. A theory of deposition processes by Edwards 
and Wilkinson [8] is able to predict the values of a, p, z for the random filling model 
with surface diffusion. By solving a linear Langevin equation for the growing surface, 
they derived the exponents 

g- = L"f( h /  L') 

= ( 2 - d ) / 2  p = (2 - d)/4 and 2 = 2  (2) 
in d + 1 dimensions. In 1 + 1 dimensions, the result a = 1/2, p = 1/4 and z = 2 is in 
excellent agreement with simulations [4]. This work was later extended by Karder 
er a1 [9] who took into account the possibility of lateral growth. They showed that the 
exponents become Q = 1/2, p = 1/3 and z = 3/2 in 1 + 1 dimensions. It appears that 
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the result ( p  = 1/4) for deposition models with restructuring can be accounted for by 
a theory of Edwards and Wilkinson [8], while the value p in the ballistic model without 
restructuring ( p  = 1/3) can be accounted for by a theory of Kardar et a1 [9]. 

Very recently, Jullien and Meakin [ 101 studied the influence of a finite concentration 
of falling particles in ballistic deposition with restructuring in 1 + 1 dimensions. They 
found that the exponent p for an extremely large deposit varies from 1/4 (for small 
concentrations) to 1/3 (for large concentrations). Also a roughening phase transition 
in surface growth was found in both 2 + 1 and 3 + 1 dimensions [ 111. Krug [ 121 proposed 
a classification of deposition processes which explains why some of models are governed 
by the linear theory [8]. 

In this letter we consider the effects of surface diffusion with threshold on the 
scaling structure of surface properties in the random filling deposition model. The 
surface diffusion occurs only when the difference of the height between the nearest 
neighbours is greater than the threshold Ah. The growth of an interface from a substrate 
can be described by 

ah 
at 
- = D V * ( O ( V h - A h ) V h ) + T ( X ,  t )  (3)  

where h ( x ,  t )  is the height of the interface at position x and time t, D is the surface 
diffusion constant, O ( x )  is the step function, Ah is the threshold, and ~ ( x ,  t )  is white 
noise in space and time. In the limit of A h + 0 ,  equation ( 3 )  reduces to the linear 
equation of Edwards and Wilkinson [ 8 ] .  

Firstly, we explain the random filling model with surface diffusion which was 
proposed by Family [4]. Particles simply rain down onto a substrate. Particles move 
along straight line trajectories until they reach the top of the column in which they 
are dropped. A deposited particle diffuses around on the surface within a prescribed 
region about the column in which it is dropped until it finds the column with the 
smallest height. At this point the particle sticks to the top of that column and becomes 
part of the aggregate. In the absence of this diffusive motion, the process is a random 
filling process in which there is no correlation between columns. The height of the 
column in the case with no diffusion follows a Poisson process and correspondingly 
the surface width 5 diverges with the square root of h, independent of L. With the 
introduction of surface diffusion the surface becomes smoother. The surface width can 
be written in the scaling form (1) with a = 1/2, p = 1/4 and z = 2. In our model surface 
diffusion occurs only when the difference of the heights between the nearest neighbours 
is greater than a critical value Ah. In the limit of Ah += 0, the surface width scales as 
h1’4 for an extremely large deposit in 1 + 1 dimensions. In the limit of Ah +a, the 
surface width scales as h”2.  Accordingly, with the introduction of the threshold into 
surface diffusion, a crossover phenomenon is expected to occur from the no diffusion 
region on small length scales to the surface diffusion region on large length scales. 

We study the random deposition model on a square lattice in which particles are 
deposited from above onto a line of L sites representing the initial nucleation seeds. 
We employ periodic boundary conditions so that columns i and i+ L are equivalent. 
A newly arriving particle is allowed to diffuse around nearest neighbours if the difference 
of the heights between the nearest neighbours is greater than a critical value Ah, i.e. 
a particle dropped in column i sticks to the top of column i, i + 1 or i - 1, depending 
on the heights of the three columns. Examples of deposits introducing surface diffusion 
with the threshold are shown in figure 1. With decreasing critical value Ah, the surface 
of the deposit becomes smoother. The surface width 6 of the surface is plotted against 
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Figure 1. Typical deposits obtained for the threshold A h  = 0,5, 10 and m. These simulations 
were performed with L = 600 and the maximum height 150. With decreasing Ah,  the surface 
becomes smoother. 

the mean height of the deposit (log-log plot) for Ah = 30, 25, 20, 15, 10, 5, 2.5 and 0. 
6 is the result of one simulation with L = 10 000 and h varying up to 3000. The exponent 
p can be estimated from the curves of figure 2. In the limit of Ah -, CO the slope of the 
curve is 1/2 and in the limit of Ah -, 0 the slope is 1/4. The crossover is observed from 
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Figure 2. Surface width, 6, of the surface as a function of the mean height of the deposit, 
h (log-log plot) for A h  =0 ,  2.5, 5, 10, 15, 20, 25 and 30. The crossover from the slope 1/2 
to the slope 1/4 is observed. 



L1142 Letter to the Editor 

no diffusion on small length scales to surface diffusion on large length scales. We plot 
the crossover length against the threshold Ah in figure 3. We can find the crossover 
exponent #J =0.58. We propose the following scaling form for an extremely large 
deposit: 

t= h ” 2 g ( ( l / A h ) h ’ )  (4) 

with 
constant if x<< 1 
x ( ~ / 4 - ~ / 2 ) / +  if x >>1. d x )  = { 

The crossover length h,  scales as follows: 

h,= (l/Ah)-’/’ ( 5 )  
where #J = 0.58. The above scaling form holds for 1 << h << L. In the region, h >> L, the 
following scaling form is satisfied: 

6 = L’/2. ( 6 )  

[=  L”2f({h1~2g((1/Ah)h’)}4/L2). (7) 

The scaling form unified by (1) and (4) is given by 

This implies that 6 behaves as L’” for h >> L, as h1’4 for h, < h << L, and as h’ l2  for 
1<< h < h , .  

In conclusion, effects of surface diffusion with the threshold on surface properties 
are studied in 1 + 1 dimensions. For an extremely large deposit, a crossover phenomenon 
is found to occur from the no diffusion structure on small length scales to the surface 
diff usion-dominated region on large length scales. The crossover length from the 
random filling deposition to the random deposition with surface diffusion is calculated. 

Ah 
Figure 3. The logarithm of the crossover length h, is plotted against the logarithm of the 
threshold Ah. The straight line through the data points indicates that h, scales as Ah”” .  
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